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FINITE ELEMENT ANALYSIS OF DENSITY FLOW USING
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SUMMARY

A finite element method is proposed for the analysis of density flow which is induced by a difference of
density. The method employs the idea that density variation can be pursued by using markers distributed
in the flow field. For the numerical integration scheme, the velocity correction method is successfully used,
introducing a potential for the correction of velocity. This method is useful because one can use linear
interpolation functions for velocity, pressure and potential based on the triangular finite element. The final
equations can be formulated using the quasi-explicit finite element method. A flume in a tank with sloping
bottom has been analysed by the present method. The computed results show extremely good agreement
with the experimental observations.
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INTRODUCTION

There are a number of engineering problems which require one to solve the problem of a density
flow induced by the difference of fluid density. In recent years, much research concerned with
such density flows has been presented, based on numerical analysis. One of the common analysis
methods is referred to as the MAC method;' > this uses many markers distributed in the flow
field and moves them to pursue the loci of fluid particles. These analyses are mainly performed
by the finite difference method. The basic idea can be successfully extended to the finite element
analysis. This paper presents the finite element method for a density flow in which the density
variation is accounted for by markers distributed in the flow field and moved according to the
fluid velocity.

The authors’ research group has previously presented the finite element method based on the
two step explicit numerical integration scheme.®"® An advantageous point is that computational
core storage can be saved by the explicit computation. This is because the computation can be
carried out mainly by the multiplication of coefficients and velocity and pressure vectors. Contrary
to this, it takes a comparatively long computational time because the time increment must be
taken short enough. Recent development of computer hardware makes it possible that a simul-
taneous equation system with a large number of unknowns can be solved easily. Thus, this paper
presents the finite element method based on the quasi-explicit numerical integration scheme.
After lengthy and careful investigations, it was decided to use the velocity correction method
among the various quasi-explicit schemes.

The basic idea of the velocity correction method was originally presented by Chorin.® Donea
et al.,'%!! Schneider and Raithby,'*'? Glowinsky et al.'* and Mizukami and Tsuchiya'® adapted
the idea to the finite element method. If one knows the velocity and pressure at an instant, the
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velocity after a short time increment can be obtained using the discretized equation of motion.
However, the computed velocity would not in general satisfy the equation of continuity. Thus,
the computed velocity must be corrected to satisfy the equation of motion. In this procedure,
the correction velocity is assumed to be derived from a potential. Then, the simultaneous equations
can be formulated with the potentials chosen to be the unknown variables. The solution of the
simultaneous equations leads to the correction velocity and pressure. The whole procedure can
be repeated until a previously assigned stage is reached.

To illustrate the validity of the present method, a density flume sliding down the inclined
bottom of a tank filled with fluid is analysed. The computed flume behaviour is quite well in
agreement with experimental observations. The velocity correction method has been shown to
be a useful tool for the analysis of density flow.

BASIC EQUATIONS

The analysis presented in this paper is concerned with the mixing phenomena of two different
fluids. The density distribution is not uniform in the entire flow field. However, the incompressi-
bility condition and Boussinesq approximation are assumed valid because the time variation of
density is not significant. The density distribution is computed from the manner in which the
fluid particles are traced by markers attached to the fluid. The transient viscous incompressible
flow can be expressed by the Navier-Stokes equations. All equations are written using the
indicial notation and the usual summation convention for repeated indices. Denoting time by
t, co-ordinates by x{i=1,2), velocity by u; and pressure by p, the equations of motion and
continuity can be described in the following forms:

1
W+ gy 4+ —p = V(g U0 — ‘P‘fi =0, (1
Po Po

u;,; =0, (2)

where the superposed dot and subscripted comma mean differentiation with respect to time ¢
and co-ordinate x;, respectively, p and p, represent density and reference density and v and f;
are viscosity and body force, respectively.

As boundary conditions, the conditions for velocity u; and surface force t; are introduced as
follows:

u; =1, on Sy, 3)

~

1
ti= { _[Tpéij + v+ “j-i)}nj =1 on Sy, “)
o

where the superposed ~ denotes the functions which are given on the boundary, n; means the
unit normal to the boundary and S, and S, are boundaries on which u; and t; are prescribed,
respectively. The boundary S of the flow field V consists of S; and S, only, and S, and §, do
not overlap. There is a free surface on a part of the boundary S, at which the position of the
surface moves according to the fluid movement. The position of the surface is governed by the
equation

on

=0, 5

where 7 is the surface elevation measured from the fundamental fluid level and /¥ is the velocity
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at the surface. As the initial condition, density, velocity and pressure are given as function of
the spatial co-ordinate:

p = pV(x,), (6)
U= ug())(xi)a (7
p=p(x,), (8)

where p©, u{®, p® are density, velocity and pressure at time t = 0, respectively.

VELOCITY CORRECTION METHOD

For the finite element method for equations (1)-(8), the velocity correction method is usefully
applied in this paper. The algorithm is derived in this section. The total time to be analysed is
divided into a large number of short time intervals, one of which is expressed by At. An arbitrary
time point which separates time intervals is denoted by n. A superscript n means that the function
is evaluated at time point n. Equation (1) can be approximated as follows:

=0 13 n, n 1 ' H h p
= *At{uj“i,j+“P,i“V(ui,j'*"uj,i),j“““fi} 9
Po Po

where @7 * ! means the approximated velocity computed by equation (9). The velocity @7 ** can be
computed at time point (n + 1) using the values of u} and p". But this computed velocity would not
satisfy the equation of continuity (2). Denoting the exact velocity by u?* ! and the pressure by p"**

at time point (n + 1), the following equation is valid:

1
uf T = — At{“?u?,j )~ L, } (10)
Po Po
where p"*is defined as the pressure obtained by equation (10). The velocity u? T * can be derived by
correcting the approximate velocity @i * ! as

W=t vy, (1

where u} means the correction velocity. Looking at equations (9)-(11), the correlation velocity can
be derived from a potential ¢ as follows:

U=, (12)
The velocity u?*! must satisfy equation {2). Thus, introduction of equations (11) and (12) into

equation (2) leads to

wit=a+ ¢ =0 (13)
From equation (13), it follows that
Pu=— '*:‘?,?Ll- (14)
Introducing the boundary conditions for the potential ¢ as
d=0, on §,, (15)
r=on="r on Sy, (16)

equation (14) can be solved to determine the potential ¢. Substituting equations (9) and (10) into
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equation (11) and rearranging the terms, the pressure equation can be derived in the form
n+1 po
+1 g 3 FO g 17
Pit=pit b 17
Therefore, the pressure at time point (n + 1) can be computed in the following form:

nti n__ﬂg 18
p P ¢ (18)

where the constant of integration is assumed to be zero.

FINITE ELEMENT METHOD

Based on the velocity v and pressure p” computed at the previous time point, the velocity v7*!

and pressure p"*! can be computed using equations (9), (11), (12) and (14). Those equations are
discretized by the finite element method. Assume that the flow field is divided into a number of
small domains called finite elements. For velocity and pressure, the interpolation equations can
be introduced as follows:

ui = (Dauazi’ (19)
p=®,p, (20)

where @, is the interpolation function, u, denotes the nodal value of velocity at the ath node
of the finite element in the ith direction, and p, means the nodal value of pressure at the ath
node. The application of the finite element procedure to equation (9) leads to the following
equation:

vy v n ,.n 1 7 n P )
M it = Mgty — AUK iyt — ;Haiﬁpﬁ + Saigitp; — p_’Fm‘ +Q,), (21
0 0

where

r

My = | (@,Dp)dV,
14

r

(cDaq)ﬁ,j(Dy) d I/a
14

r3

Hau'p = ((Da,iq)ﬂ) dv,
v

3

Saiﬁj: "((I)ac,iq’p,j)dV“*‘Jv V(q)a.kq)ﬂ,k)5ijdva
v v

"

Fy= (@,f)dV,
v

Q.= | (@,4)dS.

JS

In equation (21), M, is the lumped coefficient of M,; and M «p 18 the mixed coefficient, so that
Mal;:eMaﬁ"}"(l "‘e)Maﬁ, (22)
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where e is the lumping parameter. Applying the finite element procedure to equations (11), (12), and
(14), the following equations can be derived:

Maz/i MZf l= Maﬁ“;i + HBia¢B’ (23)
Aypy = — Hp, i 1+ 6, (24)

where

Aozﬂ = J (q)a,id)[},i)st
14

Ga_-.f (®,7)dS.
St

In the derivation of equations (23) and (24), the potential is interpolated using the following
equation:

¢ =00, (25)

where @, is the interpolation equation, which is the same as in equations (19) and (20), and ¢,
represents the nodal value of the potential at the «th node of the finite element.

COMPUTATIONAL PROCEDURES

In this paper, two phase flow in which the densities are p; and p, is analysed. A number of
markers are distributed in the flow field to distinguish fluid properties. Two kinds of markers
are used corresponding to the fluids of densities p; and p,. The position of a marker is moved
according to

X = x4+ Al (26)

where x} is the position of the marker at time point n. The density of fluid is computed at each
finite element. Let the numbers of markers at each finite element of the fluids with densities p,
and p, be m,; and m,, respectively. The density of a finite element (i} can be computed as follows:

@ _MP1t Map, 27)
my+m,

where p® means the density of the finite element (i). The reference density is computed by
the weighted average of finite elements at the initial stage:

M

S phAD
po=""3r—— (28)
YA
i=1
where A® is an area of finite element (i) and M is the total number of finite elements. The
algorithm of the velocity correction method is summarized as follows:

Step 1. Set f, p" and x!

Step 2. Computation of p® by equation (27)
Step 3. Computation of #**! by equation (21)
Step 4. Computation of ¢ by equation (24)
Step 5. Computation of u?*! by equation (23)



986 M. KAWAHARA AND K. OHMIYA

Step 6. Computation of p"*! by equation (18)
Step 7. Movement of markers by equation (26)

n+1 n+1

Step 8. Replace uf, p” and x? by u?*1, p"*! and x?*! and repeat from Step 2.

The algorithm is referred to as the quasi-explicit finite element method. This is due to the fact
that the simultaneous equation (24) must be solved, whereas the explicit computation can be
applied to equations (21), (23) and (18) because the lumped coefficients are introduced on the
left side of these equations.

ANALYSIS OF FLUME IN TANK WITH SLOPE

A schematic view of the tank used for the analysis is illustrated in Figure 1. The boundary A-B-C-
D-E is the solid wall, on which the following conditions are assumed:
u,, = uil’li - 0 (29)
on A-B-C-D-E,
r=¢n=0 (30)

where u, is the velocity normal to the boundary. Equation (29) means the so-called slip condition.
This condition is employed because the viscosity is assumed to be zero in the present condition.
The boundary A-F-E is the free surface on which the following assumptions are introduced:

1
ti: {—*—p5ij+v(ui,j+uj‘i)}nj::o on A"F*E. (31)
Po
=0 (32)
From equations (18) and (32), the pressure is expressed as
p"tt=p", on A-F-E, (33)
A F Qo ’ E
& p2=l.2 pm=1.0 [/
9 ¢ &
B C 7 ‘ y/ 8;
(95! sy e, ;/ r
12m 60m D

Figure 1. Schematic view of the tank

Figure 2. Finite element idealization
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Figure 8. Computed results at step 300(7T= 30)

= 24)

Figure 7. Computed results at step 24T
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which means that the pressure at the free surface is always the reference pressure. The surface
elevation of the free surface is determined by

%’tz+ un;=0, on A-F-E, (34)
which can be discretized based on the linear finite element approximation.

For the interpolation equations of velocity, pressure and potential, the linear interpolation
function based on triangular finite elements is used. The finite element idealization is shown in
Figure 2. The total numbers of nodal points and finite elements are 1241 and 1984, respectively.
The initial conditions of velocity, pressure and markers are represented in Figure 3. The velocity
distribution is assumed to be zero everywhere in the tank and the pressure is hydrostatic. The
domain A-B-C-F is filled with fluid with density p, = 1-2 and F-C-D~F with fluid with density
p, = 1-0. The gravity acceleration g = 9-8 and viscosity v = 0-0 are used. The time interval At =01
time units is employed with the lumping parameter e = 0-5. The computed velocity, pressure and
markers are shown in Figures 4-12. For clarity, the markers of the fluid p, are all omitted. The
computation started assuming that the barrier C-F was suddenly removed. Figures 412 are
illustrations of the flume sliding down along the bottom of the tank at every 60 time units.
Figure 4 shows the high density fluid starting to move along the slope of the bottom. The
movement behaviour of the density wedge can be clearly seen in Figures 5-8. Especially, the
shape of the wedge front computed is in very good agreement with the experimental observations.
Figure 9 represents the configuration at the instant when the wedge front arrives at any runs
up to the solid wall. Figures 10-12 clearly show the behaviour in which the high density fluid
sinks down dynamically under the low density fluid. The configuration of the free surface is also
in good agreement with the appearance observed in the experiments.
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